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It is shown that for fluids composed of particles interacting with pairwise- 
additive, spherically symmetric forces, the exact linearized transport equation 
admits mass, momentum, and kinetic energy as homogeneous solutions 
and that the kinetic part of the bulk viscosity is identically zero. 
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Enskog procedure. 

In fluids composed of monatomic particles interacting with pairwise-additive , 
centrally symmetric forces, the exact transport equation ~ for the single't 
distribution function f may be linearized by the Chapman-gnskog ~2) scheme 
to give (1.31 
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In these expressions, f~o) is the solution to the zeroth-order Chapman-  
Enskog equation and is of the form (1~ 

f~~ v, t) = n ( m / 2 7 r k T )  a/~ e x p [ - - ( m / 2 k T ) ( v  - -  u) 2] (6) 

n, T and u are velocity-independent parameters which depend on x and t 
and can be identified respectively with the local hydrodynamic density, 
temperature, and mass-average velocity at a later stage in the theory~ The 
quantity ~b, defined as q5 = ( f / f ( o ) ) _  1, accounts for the deviation of f 
from its "local equilibrium" value f (o )  The abbreviations in gq. (2) are 
~ = e / S t ,  V z = ~/axl ,  and C~ = ~/~p~, where t, x~, and pz are the time and 
the position and momentum oF particle I, respectively. Finally. the quantity 
~b(~)({k}; z) is the collision operator derived by Severne(Z~: 

@~)({k} ; z) = c -~+~ ~ <kz -+- k2 + "'" ks i ( - - S L ) [ ( L  o - -  z )  -~ (--3L)]" 
n = 2  

• i kz,  k~ ,..., k~>~, ~ (7) 

The quantity c is the mean density of the system. The angular brackets in 
Eq. (7) denote the Fourier representation of the enclosed operator, x~hich is 
composed of the free-particle part k 0 and the interaction part 8L of the 
Liouville operator. The collision operator in ~(f~o~) is obtained by explicitly 
evaluating Eq. (7) as a function ofk~ ..... k~ and - and then setting k7 = --iV~ 
and z = i0 _ i ~ .  The symblol ~ in ~(f" '~) means that only terms of first 
order in thne and spatial derivatives of H. u. and Tare  retained. To obtain the 
collision operator in U(r the quantities k, and z in Eq. (7) are set equal 
to 0 and i0, respectively. The superscript "Jr" on the right-hand angular 
bracket of Eq. (7) indicates that the matrix elements are of the irreducible 
type defined by Severne ~ and the subscript s means that the enclosed operator 
involves a set of exactly s particles. Finally, it should be noted that it has been 
assumed that a transport limit exists, i.e., that the destruction term (arising 
from initial conditions) vanishes in the long time limit. For a discussion of  
this point and of the nature of ~b('% the reader is referred to the original work 
of Severne, ~ 

The main points of this article can be summarized as the following 
theorems valid for fluids composed of particles interacting with pairwise- 
additive, centrally symmetric forces: 

Theorem 1. Ch = 1, v, and v 2 are solutions of the homogeneous 
equation 

c~(r = 0 (s)  

T h e o r e m  2. The kinetic contribution to the bulk viscosity is 
identically zero. 
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Theorems 1 and 2 are well known for gases sufficientiy dilute that 
Boltzmann's equation holds. However, the proof  given here is true for a 
fluid of arbitrary density. 

An important consequence of Theorem 1 is that it enables one to identify 
the constants n, u, and T appearing in f(o) with the local hydrodynamic 
density, mass-average velocity, and temperature, respectively. Thus, the local 
hydrodynamic variables are determined completely by ffo~, and the linear 
kinetic constitutive relations (i.e., the kinetic fluxes of  energy and momentum 
linear in gradients of the temperature and the hydrodynamic velocity) are 
determined uniquely by f(o~q~. 

To prove Theorem 1, we shall use the following result: 

N 

A --= ~ i f d/'~-~ #"({0} ;i0) / '~  vi,  t) 
s=2 j=l 

N 

= f dv2 igz ' Z  <0 IF12 I l, - - l )  Z iNc-s+l 
1 s = 2  

,• dr'--" <I, - - l  ![(Lo --  i0)-1 (--~C)] ~< i 0) I - I / ' ~ " % ,  , j ,  z) = 0 
n =2 .4=i 

O) 

Equation (9) is, in fact, the zeroth-order Chapman-Enskog equation fo r f f  ~ 
The solution has already been given above by Eq. (6). That Eq. (9) is zero 
f o r f  (~ given by Eq. (6) follows from the fact ~> that the quantity appearing 
to the right of the matrix element of the force between parIicles ! and 2 
(i.e., to the right of <0 !F~o ! 1, --1)) is equal to the Fourier transform of 

[~l~ -- ; t ) - -  1]f(~ v 1, t ) f(~ v, t) ~;2 \ i X2 Xl ~ ' . ' 

where g~O) is the equilibrium radial distribution'function evaluated.at the 
density n(x~, t) and temperature T(x~, t). Thus, the quantity appearing to 
the right of cl in Eq. (9) is proportional to the average of FI2 over an 
equilibrium ensemble. Since this force is zero, Eq. (9) is identically zero. 

We can now prove Theorem 1 by noting that ~b (*) is independent of  
n(x 1 , t ) ,  f i (x i , t )  = 1/kT(xz,t), and u(xl , t ) .  Therefore, we have the 
identities 

~(~b h = I ) =  n(xz, t) eA/~n(xz, t) (10) 

~( r  = v - u) = [ l /mS(x~,  t)] e A / e u ( x l ,  t) (11) 

cT(~b~ = l m ( v  --  u) 2) = - [ e A / e S ( X l ,  t)] + ~[ ,<xl ,  t ) / 5 ( x l ,  t)] 

• [ e A / e n ( x l ,  t)] (12) 
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Since 4 was shown to be identically zero for arbitrary n(xz, t), T(xz, t). 
and u(xl,  t), the right-hand sides of Eqs. (10)-(12) are zero, thus proving the 
theorem. 

Theorem 2 now follows directly from Theorem 1. Since 1, v, and v 2 are 
homogeneous solutions to Eq. (1), we are free to require the auxiliary 
conditions on ~b: 

f dvf '~  = 0 (13) 

for 4~ = 1, v - - u ,  and ( v - - u )  ~. These conditions allow, as already 
mentioned, the identification of the n, u, and T appearing in f " '  with the 
local density, hydrodynamic velocity, and temperature defined by the 
moments 

i J~ dv (14) 

where a = 1, v/n, and (m/3kn)(v -- u) ~, respectively. 
The kinetic part of the bulk viscosity is proportional to the trace of the 

quantity 

f fml~m(v --u)(v -- u) dv (15) 

The trace of Eq. (15) is identically zero by the auxiliary condition for 
6h = (v -- u) 2. Thus, Theorem 2 is proved. It is easy to wove  Theorem 2 
for mixtures. 

It has previously been noted by Nicolis and Severne ~~ that condition (113) 
for $~, --- (v -- u) 2 implies Theorem 2. These authors, however, did not prove 
Theorem t, which is necessary to establish the legitimacy of condition (13). 

Nicolis and Severne r have pointed out that the kinetic temperature 
defined by (14) with condition (13) is not identical to the kinetic temperature 
that one deduces from the assumptions of autocorrelation function theory. 
It has been shown, TM however, that, to second order in the interaction 
potential (i.e., the weak coupling limit), the hydrodynamic equation generated 
by Eq. (1) for the quantity T appearing i n f  !~ is identical to the equation for 
the thermodynamic temperature obtained by applying the assumption o f  
local equilibrium to the macroscopic hydrodynamic equation for the total 
energy. On the basis of this result, we feel that the kinetic temperature 
defined here is the one appropriate to linear hydrodynamics. 

In the dilute-gas limit, the operator C~ becomes the linearized Boltzmann 
operator, and the fact that mass, momentum, and kinetic energy are solutions 
to the homogeneous equation C((~b) = 0 follows because these quantities are 
invariants of the binary collisional process defining C~. Thus, it is interesting 
that in the general case considered in Theorem i, the homogeneous equation 
still has the same solutions, but not for the same reason, since the general 
operator describes a complicated many-body collisional process. 
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